(2x)^2+(3x)^2=(117)

Simple and best practice solution for (2x)^2+(3x)^2=(117) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x)^2+(3x)^2=(117) equation:



(2x)^2+(3x)^2=(117)
We move all terms to the left:
(2x)^2+(3x)^2-((117))=0
determiningTheFunctionDomain 2x^2+3x^2-117=0
We add all the numbers together, and all the variables
5x^2-117=0
a = 5; b = 0; c = -117;
Δ = b2-4ac
Δ = 02-4·5·(-117)
Δ = 2340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2340}=\sqrt{36*65}=\sqrt{36}*\sqrt{65}=6\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{65}}{2*5}=\frac{0-6\sqrt{65}}{10} =-\frac{6\sqrt{65}}{10} =-\frac{3\sqrt{65}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{65}}{2*5}=\frac{0+6\sqrt{65}}{10} =\frac{6\sqrt{65}}{10} =\frac{3\sqrt{65}}{5} $

See similar equations:

| 3(28)-y=28 | | 5j−3j=2 | | 4x+1=113 | | A=2475+0,01*x | | (12x+2)+(4x-2)+(7x-4)=180 | | f(2)=-4-3 | | (2)=-4x-3 | | -67=47+9x | | (5+2y)=4y-(6-9y) | | 4x+8+37=6x | | 3m+32=7m | | 20=13+17x | | 5(x-5)=-2x-18 | | 3=h-2 | | -7x+49=2(2x-7)-3 | | 5x-20=2(2x5) | | 10+2z=-18 | | 10x/6+45/6=15/6 | | 49-3n=4n | | Gl-9=-19 | | v/8-3=-12 | | 4x/24+15/24=4 | | 12x−20=180 | | 12−20y=180 | | 2x^2-12x+56=0 | | x/6+5/8=4 | | 2x^2-4x+12=Y | | 4x-(-4)=-12 | | (x+5)+(2x)+(5x-1)=180 | | 60-3p=7p | | 210-4y+2y+20=180 | | 10w+27-3w=2w+62 |

Equations solver categories